酷猫写作 > 范文大全 > 工作总结 > 总结范文
栏目

小升初数学总结12篇

发布时间:2023-06-08 17:57:02 热度:60

小升初数学总结12篇范文

第1篇 2022年上半年小升初数学知识点总结范文

1、小升初数学知识点(年龄问题的三大特征)

年龄问题:已知两人的年龄,求若干年前或若干年后两人年龄之间倍数关系的应用题,叫做年龄问题。

年龄问题的三个基本特征

①两个人的年龄差是不变的;

②两个人的年龄是同时增加或者同时减少的;

③两个人的年龄的倍数是发生变化的;

解题规律:抓住年龄差是个不变的数(常数),而倍数却是每年都在变化的这个关键。

例:父亲今年54岁,儿子今年18岁,几年前父亲的年龄是儿子年龄的7倍

⑴ 父子年龄的差是多少?54 – 18 = 36(岁)

⑵ 几年前父亲年龄比儿子年龄大几倍? 7 - 1 = 6

⑶ 几年前儿子多少岁? 36÷6 = 6(岁)

⑷ 几年前父亲年龄是儿子年龄的7倍? 18 – 6 = 12 (年)

答:xx年前父亲的年龄是儿子年龄的7倍。

2、小升初数学知识点(归一问题特点)

归一问题的基本特点

问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;

复合应用题中的某些问题,解题时需先根据已知条件,求出一个单位量的数值,如单位面积的产量、单位时间的工作量、单位物品的价格、单位时间所行的距离等等,然后,再根据题中的条件和问题求出结果。这样的应用题就叫做归一问题,这种解题方法叫做“归一法”。有些归一问题可以采取同类数量之间进行倍数比较的方法进行解答,这种方法叫做倍比法。

由上所述,解答归一问题的关键是求出单位量的数值,再根据题中“照这样计算”、“用同样的速度”等句子的含义,抓准题中数量的对应关系,列出算式,求得问题的解决。

3、小升初数学知识点(植树问题总结)

植树问题基本类型

在直线或者不封闭的曲线上植树,两端都植树

在直线或者不封闭的曲线上植树,两端都不植树

在直线或者不封闭的曲线上植树,只有一端植树

封闭曲线上植树

基本公式

棵数=段数+1 棵距段数=总长 棵数=段数-1

棵距段数=总长 棵数=段数 棵距段数=总长

关键问题

确定所属类型,从而确定棵数与段数的关系

4、小升初数学知识点(鸡兔同笼问题)

鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;

基本思路

①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样)

②假设后,发生了和题目条件不同的差,找出这个差是多少;

③每个事物造成的差是固定的,从而找出出现这个差的原因;

④再根据这两个差作适当的调整,消去出现的差。

基本公式

①把所有鸡假设成兔子:鸡数=(兔脚数总头数-总脚数)÷(兔脚数-鸡脚数)

②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数总头数)÷(兔脚数一鸡脚数)

关键问题:找出总量的差与单位量的差。

5、小升初数学知识点(盈亏问题)

盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.

基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.

基本题型

①一次有余数,另一次不足;

基本公式:总份数=(余数+不足数)÷两次每份数的差

②当两次都有余数;

基本公式:总份数=(较大余数一较小余数)÷两次每份数的差

③当两次都不足;

基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差

基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

做为一个seoer,我们必须要做的就是提高网站的排名和维护好排名,这就是我们的工作。但请不要不择手段,别什么技术都有了,pr却丢了。目前很多seo从业者缺乏的就是技巧,从技术中探索技巧,这才是最重的,也是不容易被打败的方法。...

本文是小编为大家搜集的优秀的职中半期总结,供大家参考!希望可以帮助到大家!xx年上学期是我校谋求发展,夯实基础的一学期,也是推进内涵发展,不断提升教育教学质量,强化管理的一学期。

根据学校的要求,按照照镜子、正衣冠、洗洗澡、治治病的总要求,对比自己各方面,现总结存在的问题一、存在问题(一)形式主义方面1、理论知识研读还不够深入。尽管自己是坚决拥护*的领导,但对*的知识学习了解得不够全面。

通过学习我认识到《信息技术教育》是近几年发展起来的新兴学科,是学科教育的重要组成部分之一,同时也是计算机教育专业最重要的主干课程。本课程以现代教学观为指导,以建构主义理论作为主线,介绍了我国信息技术教育的观念、目标、任务...

本学期结束了,总结这一学期的学习和生活,应该说比前两个学年有了很大提高,在学习上,课内态度端正,目标明确;课外兴趣广泛,注意多方知识扩展,提高自身思想文化素质,在生活上,养成良好的生活习惯,生活充实有条理,热情大方,诚实守...

把握*的建设的前进方向,是我们*加强自身建设的一条重要历史经验。在*的xx届四中全会上,我们*科学分析了*所处的历史环境和应承担的历史使命,再次指出了*的建设的前进方向。

一、形式主义方面市、县领导班子和领导干*。(1)搞形象工程、政绩工程。有的政绩观存在偏差,只顾眼前、不顾长远,只干领导看得见的事、不干群众最期盼的事。有的唯gdp,圈地造城,盲目建新区、搞广场、树地标,负债累累,寅吃卯粮。

在这一期间大家畅所欲言,各抒己见,浓浓的学习氛围不言而露,尽管不曾谋面,但远程研修拉近了我们的距离。全面提升了自己的基本素质,和业务综合能力,对于今后的发展起到了积极的促进作用。

第2篇 小升初数学知识点总结参考

关于小升初数学知识点总结参考

一、基本概念和符号:

1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。

2、常用符号:整除符号“|”,不能整除符号“ ”;因为符号“∵”,所以的符号“∴”;

二、整除判断方法:

1. 能被3、9整除:各个数位上数字的和能被3、9整除。

2能被7整除:

①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。

②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。

3. 能被11整除:

①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。

②奇数位上的数字和与偶数位数的数字和的差能被11整除。

③逐次去掉最后一位数字并减去末位数字后能被11整除。

4. 能被2、5整除:末位上的数字能被2、5整除。

5. 能被4、25整除:末两位的数字所组成的数能被4、25整除。

6. 能被8、125整除:末三位的'数字所组成的数能被8、125整除。

7. 能被13整除:

①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。

②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。

第3篇 小升初数学年龄问题知识点总结

小升初数学年龄问题知识点总结

年龄问题的三大规律:

1.两人的年龄差是不变的;

2.两人年龄的倍数关系是变化的量;

3.随着时间的推移,两人的年龄都是增加相等的量.

年龄问题的核心是:大小年龄差是个不变的量,而年龄的倍数却年年不同。

解答年龄问题的一般方法是:

几年后年龄=年龄差÷倍数差一小年龄,

几年前年龄=小年龄一年龄差÷倍数差。

1、父亲现年50岁,女儿现年14岁.问:几年前父亲年龄是女儿的5倍?

解析:父女的年龄差是50-14=36岁。年龄差是不变的。当父亲的年龄是女儿的5倍的时候,父亲比女儿大了5-1=4倍。因此,36岁是父亲比女儿多的4倍年龄。那么,当时女儿的年龄是36÷4=9岁。

因此,14-9=5年前父亲的年龄是女儿的5倍。

如果公式熟练的话,就是:14-(50-14)÷(5-1)=14-9=5

10年前吴昊的年龄是他儿子年龄的7倍.15年后,吴昊的年龄是他儿子的2倍.现在父子俩人的年龄各是多少岁?

解析:根据15年后吴昊的年龄是他儿子年龄的2倍,得出父子年龄差等于儿子当时的年龄.因此年龄差等于10年前儿子的年龄加上25岁。

10年前吴昊的年龄是他儿子年龄的7倍,父子年龄差相当于儿子当时年龄的7-1=6倍。

由于年龄差不变,所以儿子10年前的年龄的`6-1=5倍正好是25岁,可以求出儿子当时的年龄,从而使问题得解。

解:①儿子10年前的年龄:(10+15)÷(7-2)=5(岁)

②儿子现在年龄:5+10=15(岁)

③吴昊现在年龄: 5×7+10=45(岁)

4、甲对乙说:当我的岁数是你现在岁数时,你才4岁。乙对甲说:当我的岁数到你现在的岁数时,你将有67岁,甲乙现在各有:

a.45岁,26岁b.46岁,25岁c.47岁24岁 d.48岁,23岁

解析:下面是推理过程:假设甲乙的年龄差为x

则根据甲的假设,当甲是乙现在的年龄时,乙是4岁。则乙现在的年龄是4+x

因为甲乙的年龄差是x,那么甲现在的年龄是4+2x

因此,根据乙的假设,当乙的年龄是4+2x时,甲的年龄是4+2x+x=67

因此x=(67-4)/3=21

乙的年龄(67-4)/3+4=25岁,甲的年龄是4+21*2=46岁

5、今年父亲年龄是儿子年龄的10倍,6年后父亲年龄是儿子年龄的4倍,则今年父亲、儿子的年龄分别是( )

a.60岁,6岁 b.50岁,5岁 c.40岁,4岁 d.30岁,3岁

解析:依据“年龄差不变”这个关键和核心,今年父亲年龄是儿子年龄的10倍,也即父子年龄差是9倍儿子的年龄。6年后父亲年龄是儿子年龄的4倍,也即父子年龄差是3倍儿子的年龄(6年后的年龄)。依据年龄差不变,我们可知

9倍儿子现在的年龄=3倍儿子6年后的年龄

即9倍儿子现在的年龄=3×(儿子现在的年龄+6岁)

即6倍儿子现在的年龄=3×6岁

儿子现在的年龄=3岁

第4篇 小升初数学知识点总结

小升初数学知识点总结

小编今天为大家带来小升初数学知识点,希望您读后有所收获!

小升初数学知识总结:算术规律

1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:a + b = b + a

3、乘法交换律:a b = b a

4、乘法结合律:a b c = a (b c)

5、乘法分配律:a b + a c = a b + c

6、除法的性质:a b c = a (b c)

7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 o除以任何不是o的数都得o。 简便乘法:被乘数、乘数末尾有o的乘法,可以先把o前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

8、有余数的除法: 被除数=商除数+余数

小升初数学知识总结:方程、代数与等式

等式:等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

方程式:含有未知数的等式叫方程式。

一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有的算式并计算。

代数:代数就是用字母代替数。

代数式:用字母表示的式子叫做代数式。如:3x =ab+c

分数

分数:把单位1平均分成若干份,表示这样的一份或几分的数,叫做分数。

分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的倒数是1,0没有倒数。

分数除以整数(0除外),等于分数乘以这个整数的倒数。

分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小

分数的除法则:除以一个数(0除外),等于乘这个数的倒数。

真分数:分子比分母小的分数叫做真分数。

假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

带分数:把假分数写成整数和真分数的'形式,叫做带分数。

分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

小升初数学知识总结:体积和表面积

三角形的面积=底高2。 公式 s= ah2

正方形的面积=边长边长 公式 s= a2

长方形的面积=长宽 公式 s= ab

平行四边形的面积=底高 公式 s= ah

梯形的面积=(上底+下底)高2 公式 s=(a+b)h2

内角和:三角形的内角和=180度。

长方体的表面积=(长宽+长高+宽高 ) 2 公式:s=(ab+ac+bc)2

正方体的表面积=棱长棱长6 公式: s=6a2

长方体的体积=长宽高 公式:v = abh

长方体(或正方体)的体积=底面积高 公式:v = abh

正方体的体积=棱长棱长棱长 公式:v = a3

圆的周长=直径 公式:l=r

圆的面积=半径半径 公式:s=r2

圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:s=ch=rh

圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:s=ch+2s=ch+2r2

圆柱的体积:圆柱的体积等于底面积乘高。公式:v=sh

圆锥的体积=1/3底面积高。公式:v=1/3sh

上文是小升初数学知识点,希望文章对您有所帮助!

第5篇 小升初数学分数与百分数的应用知识点总结梳理

小升初数学分数与百分数的应用知识点总结梳理

分数与百分数的应用

基本概念与性质:

分数:把单位“1”平均分成几份,表示这样的一份或几份的数。

分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

分数单位:把单位“1”平均分成几份,表示这样一份的数。

百分数:表示一个数是另一个数百分之几的数。

常用方法:

①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。

②对应思维方法:找出题目中具体的量与它所占的率的'直接对应关系。

③转化思维方法:把一类应用题转化成另一类应用题进行解答。最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法是确定不同的标准为一倍量。

④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。

⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。有以下三种情况:a、分量发生变化,总量不变。b、总量发生变化,但其中有的分量不变。c、总量和分量都发生变化,但分量之间的差量不变化。

⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。

⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。

⑧浓度配比法:一般应用于总量和分量都发生变化的状况。

第6篇 小升初数学体积和表面积知识总结

小升初数学体积和表面积知识总结

三角形的面积=底高2。 公式 s= ah2

正方形的面积=边长边长 公式 s= a2

长方形的面积=长宽 公式 s= ab

平行四边形的面积=底高 公式 s= ah

梯形的面积=(上底+下底)高2 公式 s=(a+b)h2

内角和:三角形的内角和=180度。

长方体的表面积=(长宽+长高+宽高 ) 2 公式:s=(ab+ac+bc)2

正方体的表面积=棱长棱长6 公式: s=6a2

长方体的体积=长宽高 公式:v = abh

长方体(或正方体)的体积=底面积高 公式:v = abh

正方体的体积=棱长棱长棱长 公式:v = a3

圆的周长=直径 公式:l=r

圆的面积=半径半径 公式:s=r2

圆柱的`表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:s=ch=rh

圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:s=ch+2s=ch+2r2

圆柱的体积:圆柱的体积等于底面积乘高。公式:v=sh

圆锥的体积=1/3底面积高。公式:v=1/3sh

第7篇 小升初数学小数的知识点总结

小升初数学小数的知识点总结

1、小数的意义

把整数1平均分成10份、100份、1000份 得到的十分之几、百分之几、千分之几 可以用小数表示。

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几

一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。

在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位十分之一和整数部分的最低单位一之间的进率也是10。

2、小数的分类

纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。

带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。

有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如:41.7 、 25.3 、 0.23 都是有限小数。

无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 3.1415926

无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如:

循环小数:一个数的'小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 0.0333 12.109109

一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 的循环节是 9 , 0.5454 的循环节是 54 。

纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 0.5656

混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 0.03333

写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环节只有一个数字,就只在它的上面点一个点。

第8篇 小升初数学必考知识点总结

小升初数学必考知识点总结推荐

一、算术

1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:a + b = b + a

3、乘法交换律:a × b = b × a

4、乘法结合律:a × b × c = a ×(b × c)

5、乘法分配律:a × b + a × c = a × b + c

6、除法的性质:a ÷ b ÷ c = a ÷(b × c)

7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 o除以任何不是o的数都得o. 简便乘法:被乘数、乘数末尾有o的乘法,可以先把o前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

8、有余数的除法: 被除数=商×除数+余数

二、方程、代数与等式

等式:等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

方程式:含有未知数的等式叫方程式。

一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有的`算式并计算。

代数: 代数就是用字母代替数。

代数式:用字母表示的式子叫做代数式。如:3x =ab+c

三、分数

分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的倒数是1,0没有倒数。

分数除以整数(0除外),等于分数乘以这个整数的倒数。

分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小

分数的除法则:除以一个数(0除外),等于乘这个数的倒数。

真分数:分子比分母小的分数叫做真分数。

假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1.

带分数:把假分数写成整数和真分数的形式,叫做带分数。

分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

四、体积和表面积

三角形的面积=底×高÷2. 公式 s= a×h÷2

正方形的面积=边长×边长 公式 s= a2

长方形的面积=长×宽 公式 s= a×b

平行四边形的面积=底×高 公式 s= a×h

梯形的面积=(上底+下底)×高÷2 公式 s=(a+b)h÷2

内角和:三角形的内角和=180度。

长方体的表面积=(长×宽+长×高+宽×高 ) ×2 公式:s=(a×b+a×c+b×c)×2

正方体的表面积=棱长×棱长×6 公式: s=6a2

长方体的体积=长×宽×高 公式:v = abh

长方体(或正方体)的体积=底面积×高 公式:v = abh

正方体的体积=棱长×棱长×棱长 公式:v = a3

圆的周长=直径×π 公式:l=πd=2πr

圆的面积=半径×半径×π 公式:s=πr2

圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:s=ch=πdh=2πrh

圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:s=ch+2s=ch+2πr2

圆柱的体积:圆柱的体积等于底面积乘高。公式:v=sh

圆锥的体积=1/3底面×积高。公式:v=1/3sh

五、数量关系计算公式

单价×数量=总价 2、单产量×数量=总产量

速度×时间=路程 4、工效×时间=工作总量

加数+加数=和 一个加数=和+另一个加数

被减数-减数=差 减数=被减数-差 被减数=减数+差

因数×因数=积 一个因数=积÷另一个因数

被除数÷除数=商 除数=被除数÷商 被除数=商×除数

第9篇 小升初数学几何易错知识总结

关于小升初数学几何易错知识总结

一、线、角

1.直线没有端点,没有长度,可以无限延伸。

2.射线只有一个端点,没有长度,射线可以无限延伸,并且射线有方向。

3.在一条直线上的一个点可以引出两条射线。

4.线段有两个端点,可以测量长度。圆的半径、直径都是线段。

5.角的两边是射线,角的大小与射线的长度没有关系,而是跟角的两边叉开的大小有关,叉得越大角就越大。

6.几个易错的角边关系:

(1)平角的两边是射线,平角不是直线。

(2)三角形、四边形中的角的两边是线段。

(3)圆心角的两边是线段。

7.两条直线相交成直角时,这两条直线叫做互相垂直。其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

8.从直线外一点到这条直线所画的垂直线段的长度叫做点到直线的距离。

9.在同一个平面上不相交的'两条直线叫做平行线。

二、三角形

1.任何三角形内角和都是180度。

2.三角形具有稳定的特性,三角形两边之和大于第三边,三角形两边之差小于第三边。

3.任何三角形都有三条高。

4.直角三角形两个锐角的和是90度。

5.两个三角形等底等高,则它们面积相等。

6.面积相等的两个三角形,形状不一定相同。

三、正方形面积

1.正方形面积:边长边长

2.正方形面积:两条对角线长度的积2

四、三角形、四边形的关系

两个完全一样的三角形能组成一个平行四边形。

两个完全一样的直角三角形能组成一个长方形。

两个完全一样的等腰直角三角形能组成一个正方形。

两个完全一样的梯形能组成一个平行四边形。

五、圆

1.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。则长方形的面积等于圆的面积,长方形的周长比圆的周长增加r2。

2.一个环形,外圆的半径是r,内圆的半径是r,它的面积是

3.半圆的周长等于圆的周长的一半加直径。

半圆的周长公式:c=d?2+d或c=pr+2r

4.半圆面积=圆的面积/2

5.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。

六、圆柱、圆锥

1.把圆柱的侧面展开,得到一个长方形,这个长方形的长等于圆柱的底面的周长,宽等于圆柱的高。

2.如果把圆柱的侧面展开,得到一个正方形,那么圆柱的底面周长和高相等。

3.把一个圆柱沿着半径切开,拼成一个近似的长方体,体积不变,表面积增加了两个面,增加的面积是rh2。

4.把一个圆柱沿着底面直径劈开,得到两个半圆柱体,表面积和比原来增加了两个长方形的面,增加的面积和是dh2。

5.把一个圆柱加工成一个最大的圆锥,那么圆柱与圆锥等底等高,削去的圆柱的体积占圆柱体积的,削去的圆柱的体积占圆锥体积的2倍。

6.把一个圆柱截成几段,增加的表面积是底面圆,增加的面的个数是:截的次数2。

第10篇 小升初数学几何的初步知识总结

关于小升初数学几何的初步知识总结

(1)线

*直线

直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。

*射线

射线只有一个端点;长度无限。

*线段

线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。

*平行线

在同一平面内,不相交的`两条直线叫做平行线。

两条平行线之间的垂线长度都相等。

*垂线

两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。

从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。

(2)角

(1)从一点引出两条射线,所组成的图形叫做角。这个点叫做角的顶点,这两条射线叫做角的边。

(2)角的分类

锐角:小于90°的角叫做锐角。

直角:等于90°的角叫做直角。

钝角:大于90°而小于180°的角叫做钝角。

平角:角的两边成一条直线,这时所组成的角叫做平角。平角180°。

周角:角的一边旋转一周,与另一边重合。周角是360°。

第11篇 小升初数学知识点的分数总结

关于小升初数学知识点的分数总结

小升初是每位家长和孩子人生的转折,为了帮助考生更好的备考小升初,数学网为你整理小升初数学知识点分数的相关内容。

小升初数学知识点分数

分数乘分数,应该分子乘分子,分母乘分母。

整数乘法的交换律、结合律和分配律,对于分数乘法也适用。

倒数的认识:乘积是 1的两个数互为倒数。分子分母交换位置,找到一个数的倒数。

分数除法:

除以一个不等于0的数,等于乘这个数的倒数。

比和比的应用:

两个数相除又叫做两个数的比。

在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

比值通常用分数表示,也可以用小数或整数表示。

比的后项不可以是0

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

根据比的基本性质,可以把比化成最简单的整数比。

整数可以看成一个特殊的分数,所以不管被除数、除数是整数还是分数,计算方法都是一样的。

除以一个数(0除外),就等于乘以这个数的'倒数。

圆:

圆心用o表示。连接圆心和圆上任意一点的线段叫做半径,一般用r表示。通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。

在同一个圆内,所有的半径和直径都相等。直径是半径长度的2倍,半径的长度是直径的1/2。

长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。

等腰三角形、等腰梯形只有一条对称轴。

长方形有两条对称轴。

等边三角形有三条对称轴。

正方形有四条对称轴。

圆有无数条对称轴。

把圆规的两脚分开,定好两脚尖的距离作为半径。

圆的周长:任意一个圆的周长与它的直径的比是一个固定的数,我们把它叫做圆周率,用字母 pai 表示。它是一个无限不循环小数。 如果用c表示圆的周长 公式:

圆的面积:

把圆分成若干(偶数)等份,剪开后,用这些近似等腰三角形的纸片,拼成一个接近长方形、近似平行四边形

圆的面积公式:

一条弧和经过这条弧来暖的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。圆是一种曲线图形,

一个圆的周长等于它的直径乘pai

百分数:

百分数可以看成分母是100的分数,可以直接写成小数。

百分数可以化成最简分数。

除不尽时,通常保留三位小数。

一成是十分之一,改写成百分数就是10%。三成五就是十分之三点五,改成百分数就是35%(注意大写和小写)

分数应用题:

1、一、读题理解题意,找出单位1,二、画出线段图,三、列出等量关系,四、根据等量关系列式解答。

2、 比谁,谁就做分母。

3、 不好理解的数量关系就用方程。

4、 答要写完整,注意写单位名称。

注意分数乘法的意义、分数除法的意义

五、百分数

百分数在生活中应用广泛,所涉及问题基本和分数问题相同,但是要乘100%,%号的写法两个0要小写,不要与百分数前面的数混淆。

百分数与小数分数互化。百分数化小数,去掉百分号,同时把小数点向左移动两位就可以了。

小数化成百分数,只要把小数点向右移动两位,同时添上百分号。小数化成分数,移动小数点位置变为整数做分子,分母变成10、100、1000,再化简。分数化成小数,用除法,除不尽的保留两位小数。分数化成百分数:

1、用分数的基本性质,把分数分母扩大或者缩小分母是100的分数,再写成百分数形式,这种方法简便,但有局限性。

2、利用分数除法把分数化成小数,再化成百分数。除不尽的情况结果保留三位小数三位小数,因此分子除以分母的商要算到小数第四位,四舍五入后,近似商取三位数。百分号前保留一位小数。这种方法适用范围广。

百分数化成分数,写成分数形式,再约分。

分数表是一个数,也可以表示两个数的关系,百分数只表示两个数的关系,没有单位。

百分数的意义:表示一个数是另一个数的百分之几,也叫百分率或者百分比。

一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。

一般出粉率在70、80%,出油率在30、40%。

六、统计

条形统计图可以知道每个数量的多少。折现统计图可以知数量的增减,扇形统计图可以知道部分和总量的关系。

七、数学广角

研究中国古代的鸡兔同笼问题。

1、用表格方式解决有局限性,数目必须小,例:

头数 鸡(只)兔(只)腿数

35 1 34

35 2 33

35 3 32

(逐一列表法、腿数少小幅度跳跃、腿数多大幅度跳跃、跳跃逐一相结合、取中列表)

2、用假设法解决

(1) 假如都是兔

(2) 假如都是鸡

(3) 假如它们各抬起一条腿

(4) 假如兔子抬起两条前腿

(5)这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?

3、用代数方法解(一般规律)

整数、分数、百分数应用题结构类型

(一)求甲是乙的几倍(或几分之几或百分之几)的应用题。

解法:甲数除以乙数

例:校园里有杨树40棵,柳树有50棵,杨树的棵树占柳树的百分之几?(或几分之几?)

(二)求甲数的几倍(或几分之几或百分之几)是多少的应用题。

解答分数应用题,首先要确定单位1,在单位1确定以后,一个具体数量总与一个具体分数(分率)相对应,这种关系叫量率对应,这是解答分数应用题的关键。

求一个数的几倍(几分之几或百分之几)是多少用乘法,单位1分率=对应数量

例:六年级有学生180人,五年级的学生人数是六年级人数的。五年级有学生多少人?

180=150

(三)已知甲数的几倍(或几分之几或百分之几)是多少,求甲数(即求标准量或单位1)的应用题。

解法:对应数量对应分率=单位1

例:育红小学六年级男生有120人,占参加兴趣活动小组人数的. 六年级参加兴趣活动小组人数共有学生多少人?

120=200

第12篇 小升初数学提分技巧总结

小升初数学提分技巧总结

一、构建知识脉络

要学会构建知识脉络,数学概念是构建知识网络的出发点,也是数学中考考查的重点。因此,我们要掌握好代数中的数、式、不等式、方程、函数、三角比、统计和几何中的平行线、三角形、四边形、圆的概念、分类,定义、性质和判定,并会应用这些概念去解决一些问题。

二、夯实数学基础

在复习过程中夯实数学基础,要注意知识的不断深化,注意知识之间的内在联系和关系,将新知识及时纳入已有知识体系,逐步形成和扩充知识结构系统,这样在解题时,就能由题目所提供的信息,从记忆系统中检索出有关信息,选出最佳组合信息,寻找解题途径、优化解题过程。

三、建立病例档案

准备一本数学学习病例卡,把平时犯的错误记下来,找出病因开出处方,并且经常地拿出来看看、想想错在哪里,为什么会错,怎么改正,这样到中考时你的数学就没有什么病例了。我们要在教师的指导下做一定数量的数学习题,积累解题经验、总结解题思路、形成解题思想、催生解题灵感、掌握学习方法。

四、常用公式技巧

准确对经常使用的数学公式要理解来龙去脉,要进一步了解其推理过程,并对推导过程中产生的一些可能变化自行探究。对今后继续学习所必须的知识和技能,对生活实际经常用到的常识,也要进行必要的训练。例如:1-20的平方数;简单的.勾股数;正三角形的面积公式以及高和边长的关系;30°、45°直角三角形三边的关系……这样做,一定能更好地掌握公式并胜过做大量习题,而且往往会有意想不到的效果。

五、强化题组训练

除了做基础训练题、平面几何每日一题外,还可以做一些综合题,并且养成解题后反思的习惯。反思自己的思维过程,反思知识点和解题技巧,反思多种解法的优劣,反思各种方法的纵横联系。而总结出它所用到的数学思想方法,并把思想方法相近的题目编成一组,不断提炼、不断深化,做到举一反三、触类旁通。逐步学会观察、试验、分析、猜想、归纳、类比、联想等思想方法,主动地发现问题和提出问题。

《小升初数学总结12篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关范文

酷猫分类查询入口

一键复制