酷猫写作 > 范文大全 > 工作总结 > 总结范文
栏目

高考数学知识点总结4篇

发布时间:2022-12-24 17:54:01 热度:50

高考数学知识点总结4篇范文

第1篇 2022高考数学知识点总结:一次函数

一、定义与定义式:

自变量x和因变量y有如下关系:

y=kx+b

则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx(k为常数,k≠0)

二、一次函数的性质:

1.y的变化值与对应的x的变化值成正比例,比值为k

即:y=kx+b(k为任意不为零的实数b取任何实数)

2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:

1.作法与图形:通过如下3个步骤

(1)列表;

(2)描点;

(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

2.性质:(1)在一次函数上的任意一点p(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

第2篇 2022高考数学知识点总结:指数函数、函数奇偶性

指数函数

(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与x轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与x轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于x轴,永不相交。

(7)函数总是通过(0,1)这点。

(8)显然指数函数无界。

奇偶性

注图:(1)为奇函数(2)为偶函数

定义

一般地,对于函数f(x)

(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

说明:①奇、偶性是函数的整体性质,对整个定义域而言

②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。

(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)

③判断或证明函数是否具有奇偶性的根据是定义

第3篇 2022高考数学知识点总结:对数函数性质与定义

对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。

右图给出对于不同大小a所表示的函数图形:

可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

(1)对数函数的定义域为大于0的实数集合。

(2)对数函数的值域为全部实数集合。

(3)函数总是通过(1,0)这点。

(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

(5)显然对数函数无界。

第4篇 2022高考数学知识点总结:集合知识点汇总

一.知识归纳:

1.集合的有关概念。

1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素

注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

②集合中的元素具有确定性(a?a和a?a,二者必居其一)、互异性(若a?a,b?a,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件

2)集合的表示方法:常用的有列举法、描述法和图文法

3)集合的分类:有限集,无限集,空集。

4)常用数集:n,z,q,r,n*

2.子集、交集、并集、补集、空集、全集等概念。

1)子集:若对x∈a都有x∈b,则a b(或a b);

2)真子集:a b且存在x0∈b但x0 a;记为a b(或,且 )

3)交集:a∩b={x| x∈a且x∈b}

4)并集:a∪b={x| x∈a或x∈b}

5)补集:cua={x| x a但x∈u}

注意:①? a,若a≠?,则? a ;

②若, ,则 ;

③若且 ,则a=b(等集)

3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与、?的区别;(2) 与 的区别;(3) 与 的区别。

4.有关子集的几个等价关系

①a∩b=a a b;②a∪b=b a b;③a b c ua c ub;

④a∩cub = 空集 cua b;⑤cua∪b=i a b。

5.交、并集运算的性质

①a∩a=a,a∩? = ?,a∩b=b∩a;②a∪a=a,a∪? =a,a∪b=b∪a;

③cu (a∪b)= cua∩cub,cu (a∩b)= cua∪cub;

6.有限子集的个数:设集合a的元素个数是n,则a有2n个子集,2n-1个非空子集,2n-2个非空真子集。

二.例题讲解:

例1已知集合m={x|x=m+ ,m∈z},n={x|x= ,n∈z},p={x|x= ,p∈z},则m,n,p满足关系

a) m=n p b) m n=p c) m n p d) n p m

分析一:从判断元素的共性与区别入手。

解答一:对于集合m:{x|x= ,m∈z};对于集合n:{x|x= ,n∈z}

对于集合p:{x|x= ,p∈z},由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以m n=p,故选b。

分析二:简单列举集合中的元素。

解答二:m={…, ,…},n={…, , , ,…},p={…, , ,…},这时不要急于判断三个集合间的关系,应分析各集合中不同的元素。

= ∈n, ∈n,∴m n,又 = m,∴m n,

= p,∴n p 又 ∈n,∴p n,故p=n,所以选b。

点评:由于思路二只是停留在最初的归纳假设,没有从理论上解决问题,因此提倡思路一,但思路二易人手。

变式:设集合, ,则( b )

a.m=n b.m n c.n m d.

解:

当时,2k+1是奇数,k+2是整数,选b

例2定义集合a*b={x|x∈a且x b},若a={1,3,5,7},b={2,3,5},则a*b的子集个数为

a)1 b)2 c)3 d)4

分析:确定集合a*b子集的个数,首先要确定元素的个数,然后再利用公式:集合a={a1,a2,…,an}有子集2n个来求解。

解答:∵a*b={x|x∈a且x b}, ∴a*b={1,7},有两个元素,故a*b的子集共有22个。选d。

变式1:已知非空集合m {1,2,3,4,5},且若a∈m,则6?a∈m,那么集合m的个数为

a)5个 b)6个 c)7个 d)8个

变式2:已知{a,b} a {a,b,c,d,e},求集合a.

解:由已知,集合中必须含有元素a,b.

集合a可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.

评析本题集合a的个数实为集合{c,d,e}的真子集的个数,所以共有个 .

例3已知集合a={x|x2+px+q=0},b={x|x2?4x+r=0},且a∩b={1},a∪b={?2,1,3},求实数p,q,r的值。

解答:∵a∩b={1} ∴1∈b ∴12?4×1+r=0,r=3.

∴b={x|x2?4x+r=0}={1,3}, ∵a∪b={?2,1,3},?2 b, ∴?2∈a

∵a∩b={1} ∴1∈a ∴方程x2+px+q=0的两根为-2和1,

∴ ∴

变式:已知集合a={x|x2+bx+c=0},b={x|x2+mx+6=0},且a∩b={2},a∪b=b,求实数b,c,m的值.

解:∵a∩b={2} ∴1∈b ∴22+m?2+6=0,m=-5

∴b={x|x2-5x+6=0}={2,3} ∵a∪b=b ∴

又 ∵a∩b={2} ∴a={2} ∴b=-(2+2)=4,c=2×2=4

∴b=-4,c=4,m=-5

例4已知集合a={x|(x-1)(x+1)(x+2)>0},集合b满足:a∪b={x|x>-2},且a∩b={x|1

分析:先化简集合a,然后由a∪b和a∩b分别确定数轴上哪些元素属于b,哪些元素不属于b。

解答:a={x|-21}。由a∩b={x|1-2}可知[-1,1] b,而(-∞,-2)∩b=ф。

综合以上各式有b={x|-1≤x≤5}

变式1:若a={x|x3+2x2-8x>0},b={x|x2+ax+b≤0},已知a∪b={x|x>-4},a∩b=φ,求a,b。(答案:a=-2,b=0)

点评:在解有关不等式解集一类集合问题,应注意用数形结合的方法,作出数轴来解之。

变式2:设m={x|x2-2x-3=0},n={x|ax-1=0},若m∩n=n,求所有满足条件的a的集合。

解答:m={-1,3} , ∵m∩n=n, ∴n m

①当时,ax-1=0无解,∴a=0 ②

综①②得:所求集合为{-1,0, }

例5已知集合 ,函数y=log2(ax2-2x+2)的定义域为q,若p∩q≠φ,求实数a的取值范围。

分析:先将原问题转化为不等式ax2-2x+2>0在 有解,再利用参数分离求解。

解答:(1)若 , 在 内有有解

令当 时,

所以a>-4,所以a的取值范围是

变式:若关于x的方程 有实根,求实数a的取值范围。

解答:

点评:解决含参数问题的题目,一般要进行分类讨论,但并不是所有的问题都要讨论,怎样可以避免讨论是我们思考此类问题的关键。

《高考数学知识点总结4篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关范文

酷猫分类查询入口

一键复制