第1篇 2022年在职gct数学复习备考之高数精华总结
1,几个易混概念:连续,可导,存在原函数,可积,可微,偏导数存在他们之间的关系式怎么样的?存在极限,导函数连续,左连续,右连续,左极限,右极限,左导数,右导数,导函数的左极限,导函数的右极限。
2,罗尔定理:设函数f(x)在闭区间[a,b]上连续(其中a不等于b),在开区间(a,b)上可导,且f(a)=f(b),那么至少存在一点ξ∈(a、b),使得f´(ξ)=0。罗尔定理是以法国数学家罗尔的名字命名的。罗尔定理的三个已知条件的意义,⒈f(x)在[a,b]上连续表明曲线连同端点在内是无缝隙的曲线;⒉f(x)在内(a,b)可导表明曲线y=f(x)在每一点处有切线存在;⒊f(a)=f(b)表明曲线的割线(直线ab)平行于x轴;罗尔定理的结论的直几何意义是:在(a,b)内至少能找到一点ξ,使f´(ξ)=0,表明曲线上至少有一点的切线斜率为0,从而切线平行于割线ab,与x轴平行
3,应用多次中值定理的专题:大部分的考研题,一般要考察你应用多次中值定理,最重要的就是要培养自己对这种题目的敏感度,要很快反映老师出这题考哪几个中值定理,我的敏感性是靠自己多练习综合题培养出来的。我会经常会去复习,那样我对中值定理的题目早已没有那种刚学高数时的害怕之极。要想对微分中值定理这块的题目有条理的掌握,看我这个总结定会事半功倍的。
4,泰勒公式展开的应用专题:我以前,以及我所有的同学,看到泰勒公式就哆嗦,因为咋一看很长很恐怖,瞬间大脑空白,身体失重的感觉。其实在我搞明白一下几点后,原来的症状就没有了。第一:什么情况下要进行泰勒展开;第二:以哪一点为中心进行展开;第三:把谁展开;第四:展开到几阶?
5,对称性,轮换性,奇偶性在积分(重积分,线,面积分)中的综合应用:这几乎每年必考,要么小题中考,要么大题中要用,这是必须掌握的知识,但是往往不是那么容易就靠做3,4个题目就能了解这知识点的应用到底有多广泛。我们做积分题,尤其多重积分和线面积分,死算也许能算出结果,但是要是能用以上性质,那可真是三下五除二搞定,这方面的感觉相信大家有过,可是或许仅仅是昙花一现,因为你做出来了以为以后就一定会在相似的题目中用,其实不然,因为仅仅靠几道题目很大程度上不能给你留下太深刻的印象,下次轮到的时候或许就是考场上了,你可能顿时苦思冥想,最终还是选择了最傻的办法,浪费了宝贵时间。说这些其实就是说明,考场上的正常或超常发挥是建立在平时踏实做,见识广,严要求的基础上。
第2篇 2022年大学高数学习方法总结
一提起“数学”课,大家都会觉得再熟悉不过了,从小学一直到高中,它几乎就是一门陪伴着我们成长的学科。然而即使有着大学之前近xx年的数学学习生涯,仍然会有很多同学在初学大学数学时遇到很多困惑与疑问,更可能会有一种摸不着头脑的感觉。那么,究竟应该如何在大学中学好高数呢?
在中学的时候,可能许多同学都比较喜欢学习数学,而且数学成绩也很优秀,因而这时是处于一种良性循环的状态,不会有太多的挫败感,因而也就不会太在意勇于面对的重要性。而刚一进入大学,由于理论体系的截然不同,我们会在学习开始阶段遇到不小的麻烦,甚至会有不如意的结果出现,这时就一定得坚持住,能够知难而进,继续跟随老师学习。
很多同学在刚入学不久,就是一直感觉很晕。对于上课老师所讲的知识,虽然表面上能听懂,但却不明白知识背后的真正原因,所以总是感觉学到的东西不实在。至于做题就更差劲了,“吉米多维奇”上的习题根本不敢去看,因为书上的课后习题都没几个会做的。这确实与高中的情形相差太大了,香港浸会大学的杨涛教授曾经在一次讲座中讲过:“在初学高数时感觉晕是很正常的,而且还得再晕几个月可能就好了。”所以关键是不要放弃,初学者必须要克服这个困难才能学好大学理论知识。除了要坚持外,还要注意不要在某些问题的解决上花费过多的时间。因为大学数学理论十分严谨,教科书在讲解初步知识时,有时会不可避免地用到一些以后才能学到的理论思想,因而在初步学习时就对着这种问题不放是十分不划算的。
所以,在开始学习数学时,可以考虑采取迂回的学习方式。先把那些一时难以想通的问题记下,转而继续学习后续知识,然后不时地回头复习,在复习时由于后面知识的积累就可能会想通以前遗留的问题,进而又能促进后面知识的深刻理解。这种迂回式的学习方法,使得温故不但能知新,而且还能更好地知故。
第3篇 15年大学高数教学总结
本学期我担任本科金融专业的高等数学教学工作,一学期来,我自始至终以认真、严谨的治学态度,勤恳、坚持不懈的精神从事教学工作。作为任课教师,我能认真制定计划,注重教学理论,认真备课和教学,积极参加教研组活动和学校教研活动,上好每一节课,并能经常听各位优秀老师的课,从中吸取教学经验,取长补短,提高自己的教学的业务水平。还注意多方面、多角度去培养学生的分析能力。
现将本学期的教育教学工作总结如下:
(一)主要工作:
一、加强师德修养,提高道德素质 过去的一个学期中,我认真加强师德修养,提高道德素质。认真学习教育法律法规,严格按照有事业心、有责任心、有上进心、爱校、爱岗、爱生、团结协作、乐于奉献、勇于探索、积极进取的要求去规范自己的行为。对待学生做到:民主平等,公正合理,严格要求,耐心教导;对待同事做到:团结协作、互相尊重、友好相处;对待自己做到:严于律已、以身作则、为人师表。
二、加强教育教学理论学习
能积极投入到课改的实践探索中,认真学习,加快教育、教学方法的研究,更新教育观念,掌握教学改革的方式方法,提高了驾驭课程的能力。
三、教学工作
在教学中,我大胆探索适合于学生发展的教学方法。为了教学质量,我做了下面的工作:
1、认真备好课。
①认真学习钻研教材。了解教材的基本思想、基本概念、结构、重点与难点,掌握知识的逻辑。多方参阅各种资料,力求深入理解教材,准确把握难重点。
②了解学生原有的知识技能的质量,他们的兴趣、需要、方法、习惯,学习新知识可能会有哪些困难,采取相应的措施。
2、坚持坚持学生为主体,向50分钟课堂教学要质量。精心组织好课堂教学,关注全体学生,坚持学生为主体,注意信息反馈,调动学生的注意力,使其保持相对稳定性。同时,激发学生的情感,针对大一学生特点,以愉快式教学为主,不搞满堂灌,坚持学生为主体,注重讲练结合。在教学中注意抓住重点,突破难点。
3、认真批改作业。
在作业批改上,做到认真及时,重在订正,及时反馈。
(二)存在问题
由于我是一名年轻教师,对教材的熟悉程度以及在教学经验上还很欠缺。因此在教学过程中有时会出现一些问题。除此之外,现在注重考察的是学生应用知识的能力,但由于以前的教学模式,学生的这种能力培养还很弱,以后还需加强这方面的培养。
(三)今后努力的方向
1、加强学习,学习新的教学思想。
2、挖掘教材,进一步把握知识点和考点。
3、多听课,学习同科目教师先进的教学方法的教学理念。
4、加强转差培优力度。
5、让学生具有良好的数学思维。
一份耕耘,一份收获,教学工作苦乐相伴。在以后的教学工作中,我要不断总结经验,力求提高自己的教学水平,还要多下功夫加强对个别差生的辅导,相信一切问题都会迎刃而解,我也相信有耕耘总会有收获!
第4篇 考研高数8大重要知识点总结
考研高数8大重要知识点总结
1.函数、极限与连续
重点考查极限的计算、已知极限确定原式中的未知参数、函数连续性的讨论、间断点类型的判断、无穷小阶的比较、讨论连续函数在给定区间上零点的个数、确定方程在给定区间上有无实根。
2.一元函数微分学
重点考查导数与微分的定义、函数导数与微分的计算(包括隐函数求导)、利用洛比达法则求不定式极限、函数极值与最值、方程根的个数、函数不等式的证明、与中值定理相关的证明、在物理和经济等方面的实际应用、曲线渐近线的求法。
3.一元函数积分学
重点考查不定积分的计算、定积分的`计算、广义积分的计算及判敛、变上限函数的求导和极限、利用积分中值定理和积分性质的证明、定积分的几何应用和物理应用。
4.向量代数与空间解析几何(数一)
主要考查向量的运算、平面方程和直线方程及其求法、平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题等,该部分一般不单独考查,主要作为曲线积分和曲面积分的基础。
5.多元函数微分学
重点考查多元函数极限存在、连续性、偏导数存在、可微分及偏导连续等问题、多元函数和隐函数的一阶、二阶偏导数求法、有条件极值和无条件极值。另外,数一还要求掌握方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。
6.多元函数积分学
重点考查二重积分在直角坐标和极坐标下的计算、累次积分、积分换序。此外,数一还要求掌握三重积分的计算、两类曲线积分和两种曲面积分的计算、格林公式、高斯公式及斯托克斯公式。
7.无穷级数(数一、数三)
重点考查正项级数的基本性质和敛散性判别、一般项级数绝对收敛和条件收敛的判别、幂级数收敛半径、收敛域及和函数的求法以及幂级数在特定点的展开问题。
8.常微分方程及差分方程
重点考查一阶微分方程的通解或特解、二阶线性常系数齐次和非齐次方程的特解或通解、微分方程的建立与求解。此外,数三考查差分方程的基本概念与一介常系数线形方程求解方法。数一还要求会伯努利方程、欧拉公式等。
第5篇 2022考研数学冲刺 高数精华总结
考研数学令许多考生感到头疼,而高数是最令人痛恨的课程,但这部分很重要。希望大家还是要努力复习,争取让数学给自己加分,而不是拖后腿。下面给大家总结一些高数的复习精华,希望能给大家带来些帮助。
1,几个易混概念:连续,可导,存在原函数,可积,可微,偏导数存在他们之间的关系式怎么样的?存在极限,导函数连续,左连续,右连续,左极限,右极限,左导数,右导数,导函数的左极限,导函数的右极限。
2,罗尔定理:设函数f(x)在闭区间[a,b]上连续(其中a不等于b),在开区间(a,b)上可导,且f(a)=f(b),那么至少存在一点ξ∈(a、b),使得 f'(ξ)=0.罗尔定理是以法国数学家罗尔的名字命名的。罗尔定理的三个已知条件的意义,⒈f(x)在[a,b]上连续表明曲线连同端点在内是无缝隙的曲线;⒉f(x)在内(a,b)可导表明曲线y=f(x)在每一点处有切线存在;⒊f(a)=f(b)表明曲线的割线(直线ab)平行于x轴;罗尔定理的结论的直几何意义是:在(a,b)内至少能找到一点ξ,使f'(ξ)=0,表明曲线上至少有一点的切线斜率为0,从而切线平行于割线ab,与x轴平行
3,应用多次中值定理的专题:大部分的考研题,一般要考察你应用多次中值定理,最重要的就是要培养自己对这种题目的敏感度,要很快反映老师出这题考哪几个中值定理,我的敏感性是靠自己多练习综合题培养出来的。我会经常会去复习,那样我对中值定理的题目早已没有那种刚学高数时的害怕之极。要想对微分中值定理这块的题目有条理的掌握,看我这个总结定会事半功倍的。
4,泰勒公式展开的应用专题:我以前,以及我所有的同学,看到泰勒公式就哆嗦,因为咋一看很长很恐怖,瞬间大脑空白,身体失重的感觉。其实在我搞明白一下几点后,原来的症状就没有了。第一:什么情况下要进行泰勒展开;第二:以哪一点为中心进行展开;第三:把谁展开;第四:展开到几阶?
5,对称性,轮换性,奇偶性在积分(重积分,线,面积分)中的综合应用:这几乎每年必考,要么小题中考,要么大题中要用,这是必须掌握的知识,但是往往不是那么容易就靠做3,4个题目就能了解这知识点的应用到底有多广泛。我们做积分题,尤其多重积分和线面积分,死算也许能算出结果,但是要是能用以上性质,那可真是三下五除二搞定,这方面的感觉相信大家有过,可是或许仅仅是昙花一现,因为你做出来了以为以后就一定会在相似的题目中用,其实不然,因为仅仅靠几道题目很大程度上不能给你留下太深刻的印象,下次轮到的时候或许就是考场上了,你可能顿时苦思冥想,最终还是选择了最傻的办法,浪费了宝贵时间。说这些其实就是说明,考场上的正常或超常发挥是建立在平时踏实做,见识广,严要求的基础上。
第6篇 最新考研高数8大重要知识点总结
最新考研高数8大重要知识点总结
1.函数、极限与连续
重点考查极限的计算、已知极限确定原式中的未知参数、函数连续性的讨论、间断点类型的判断、无穷小阶的比较、讨论连续函数在给定区间上零点的个数、确定方程在给定区间上有无实根。
2.一元函数微分学
重点考查导数与微分的定义、函数导数与微分的计算(包括隐函数求导)、利用洛比达法则求不定式极限、函数极值与最值、方程根的个数、函数不等式的证明、与中值定理相关的证明、在物理和经济等方面的实际应用、曲线渐近线的求法。
3.一元函数积分学
重点考查不定积分的'计算、定积分的计算、广义积分的计算及判敛、变上限函数的求导和极限、利用积分中值定理和积分性质的证明、定积分的几何应用和物理应用。
4.向量代数与空间解析几何(数一)
主要考查向量的运算、平面方程和直线方程及其求法、平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题等,该部分一般不单独考查,主要作为曲线积分和曲面积分的基础。
5.多元函数微分学
重点考查多元函数极限存在、连续性、偏导数存在、可微分及偏导连续等问题、多元函数和隐函数的一阶、二阶偏导数求法、有条件极值和无条件极值。另外,数一还要求掌握方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。
6.多元函数积分学
重点考查二重积分在直角坐标和极坐标下的计算、累次积分、积分换序。此外,数一还要求掌握三重积分的计算、两类曲线积分和两种曲面积分的计算、格林公式、高斯公式及斯托克斯公式。
7.无穷级数(数一、数三)
重点考查正项级数的基本性质和敛散性判别、一般项级数绝对收敛和条件收敛的判别、幂级数收敛半径、收敛域及和函数的求法以及幂级数在特定点的展开问题。
8.常微分方程及差分方程
重点考查一阶微分方程的通解或特解、二阶线性常系数齐次和非齐次方程的特解或通解、微分方程的建立与求解。此外,数三考查差分方程的基本概念与一介常系数线形方程求解方法。数一还要求会伯努利方程、欧拉公式等。
第7篇 2022考研高数8大重要知识点总结
新东方在线推荐:2022年考研一次顺利课程!!一科不过,全科免费
1.函数、极限与连续
重点考查极限的计算、已知极限确定原式中的未知参数、函数连续性的讨论、间断点类型的判断、无穷小阶的比较、讨论连续函数在给定区间上零点的个数、确定方程在给定区间上有无实根。
2.一元函数微分学
重点考查导数与微分的定义、函数导数与微分的计算(包括隐函数求导)、利用洛比达法则求不定式极限、函数极值与最值、方程根的个数、函数不等式的证明、与中值定理相关的证明、在物理和经济等方面的实际应用、曲线渐近线的求法。
3.一元函数积分学
重点考查不定积分的计算、定积分的计算、广义积分的计算及判敛、变上限函数的求导和极限、利用积分中值定理和积分性质的证明、定积分的几何应用和物理应用。
4.向量代数与空间解析几何(数一)
主要考查向量的运算、平面方程和直线方程及其求法、平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题等,该部分一般不单独考查,主要作为曲线积分和曲面积分的基础。
5.多元函数微分学
重点考查多元函数极限存在、连续性、偏导数存在、可微分及偏导连续等问题、多元函数和隐函数的一阶、二阶偏导数求法、有条件极值和无条件极值。另外,数一还要求掌握方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。
6.多元函数积分学
重点考查二重积分在直角坐标和极坐标下的计算、累次积分、积分换序。此外,数一还要求掌握三重积分的计算、两类曲线积分和两种曲面积分的计算、格林公式、高斯公式及斯托克斯公式。
7.无穷级数(数一、数三)
重点考查正项级数的基本性质和敛散性判别、一般项级数绝对收敛和条件收敛的判别、幂级数收敛半径、收敛域及和函数的求法以及幂级数在特定点的展开问题。
8.常微分方程及差分方程
重点考查一阶微分方程的通解或特解、二阶线性常系数齐次和非齐次方程的特解或通解、微分方程的建立与求解。此外,数三考查差分方程的基本概念与一介常系数线形方程求解方法。数一还要求会伯努利方程、欧拉公式等。
第8篇 2022考研数学高数三23个高频考点总结
数学(三)23个高频考点:
(1)曲线的渐近线;
(2)某点处的高阶导数;
(3)化极坐标系下的二次积分为直角坐标系下的二次积分;
(4)函数不等式的证明;
(5)微分方程、变限积分函数、拐点;
(6)含参数的方程组;
(7)数项级数敛散性的判定;
(8)向量组的线性相关性;
(9)未定式的极限;
(10)无界区域上的二重积分;
(11)二维均匀分布;
(12)统计量的常见分布;
(13)未定式的极限;
(14)分段函数的复合函数的导数;
(15)二元函数全微分的定义;
(16)多元函数微分学的经济应用,条件极值;
(17)利用正交变换化二次型为标准形;
(18)二维离散型随机变量的概率、数字特征;
(19)二维常见分布的随机变量函数的分布、数字特征;
(20)初等变换与初等矩阵;
(21)平面图形的面积;
(22)初等变换、伴随矩阵、抽象行列式的计算;
(23)随机事件的概率。
第9篇 大一第一学期高数总结
转眼间,大一已经过去一半了,高数学习也有了一个学期了,仔细一想高数也不是传说的那么可怕,当然也没有那么容易。
有人说,高数是一棵高数,很多人挂在了上面。但是,只要努力,就能爬上这棵高树,凭借它的高度,便能看到更远的风景。
首先,不能有畏难情绪。一进大学,就听到很多师兄师姐甚至老师说高数很难学,有很多人挂科了。这基本上是事实,但是或多或少夸张了点吧。事实上,当我们抛掉那些畏难情绪,心无旁骛的学习高数时,他并不是那么难,至少不是那种难到学不下去的。所以我们要有信心去学好它,有好大学的第一步。
其次,课前预习很重要。每个人学习习惯不同,有些人习惯预习,有些人觉得预习不适合自己。每次上课前,把课本上的内容仔细地预习一下,或者说先自学一下,把知识点先过一遍,能理解的自己先理解好,到课堂上时就会觉得有方向感,不会觉得茫然,并且自己预习时没有理解的地方在课堂上听老师讲后就能解决了,比较有针对性。
然后,要把握课堂。课堂上老师讲的每一句话都是有可能是很有用的,如果错过了就可能会使自己以后做某些习题时要走很多弯路,甚至是死路。我们主要应该在课堂上认真听讲,理解解题方法,我们现在需要的是方法,是思维,而不是仅仅是例题本身的答案。我们学习高数不是为了将来能计算算数,而是为了获得一种思想,为了提高我们的思维能力,为了能够用于解决现实问题。此外,要以教材为中心。虽说“尽信书,不如无书”,但是,就算教材不是完美的,但是教材上包含了我们所要掌握的知识点,而那些知识点,便是我们解题的基础。书上的一些基本公式、定理,是我们必须掌握的。
最后,坚持做好习题。做题是必要的,但像高中那样搞题海战术就不必要了。做好教材上的课后习题和习题册就足够了,当然,前提是认真地做好了。对于每一道题,有疑问的地方就要解决,不能不求甚解,尽量把每一个细节都理解好,这样的话,做好一题,就能解决很多类型的题了。
下面是我对这学期的'学习重点的一些总结:
一、函数
1.判断两个函数是否相同
一个函数相同的确定取决于其定义域和对应关系的确定,因此判断两个函数是否相同必须判断其定义域是否相同,且要判断表达式是否同意即可。 2.判断函数奇偶性
判断函数的奇偶性,主要的方法就是利用定义,其次是利用奇偶的性质,即奇(偶)函数之和还是奇(偶)函数;两个奇函数积是偶函数;两个偶函数之积仍是偶函数;一积一偶之积是奇函数。
3.求极限的方法
利用极限的四则运算法则、性质以及已知的极限求极限。
4.判断函数的连续性
二、导数
1.求显函数导数;
2.求隐函数导数;
3.“取对数求导法”;
4.求由参数方程所表达的函数的导数;
5.求函数微分;
三、基本初等函数求导公式
四、基本积分公式
五、常用积分公式
第10篇 2022年考研高数8大重要知识点总结
1.函数、极限与连续
重点考查极限的计算、已知极限确定原式中的未知参数、函数连续性的讨论、间断点类型的判断、无穷小阶的比较、讨论连续函数在给定区间上零点的个数、确定方程在给定区间上有无实根。
2.一元函数微分学
重点考查导数与微分的定义、函数导数与微分的计算(包括隐函数求导)、利用洛比达法则求不定式极限、函数极值与最值、方程根的个数、函数不等式的证明、与中值定理相关的证明、在物理和经济等方面的实际应用、曲线渐近线的求法。
3.一元函数积分学
重点考查不定积分的计算、定积分的计算、广义积分的计算及判敛、变上限函数的求导和极限、利用积分中值定理和积分性质的证明、定积分的几何应用和物理应用。
4.向量代数与空间解析几何(数一)
主要考查向量的运算、平面方程和直线方程及其求法、平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题等,该部分一般不单独考查,主要作为曲线积分和曲面积分的基础。
5.多元函数微分学
重点考查多元函数极限存在、连续性、偏导数存在、可微分及偏导连续等问题、多元函数和隐函数的一阶、二阶偏导数求法、有条件极值和无条件极值。另外,数一还要求掌握方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。
6.多元函数积分学
重点考查二重积分在直角坐标和极坐标下的计算、累次积分、积分换序。此外,数一还要求掌握三重积分的计算、两类曲线积分和两种曲面积分的计算、格林公式、高斯公式及斯托克斯公式。
7.无穷级数(数一、数三)
重点考查正项级数的基本性质和敛散性判别、一般项级数绝对收敛和条件收敛的判别、幂级数收敛半径、收敛域及和函数的求法以及幂级数在特定点的展开问题。
8.常微分方程及差分方程
重点考查一阶微分方程的通解或特解、二阶线性常系数齐次和非齐次方程的特解或通解、微分方程的建立与求解。此外,数三考查差分方程的基本概念与一介常系数线形方程求解方法。数一还要求会伯努利方程、欧拉公式等。
第11篇 2022考研数学高数重要知识点总结
阅读!
1.函数、极限与连续:主要考查极限的计算或已知极限确定原式中的常数、讨论函数连续性和判断间断点类型、无穷小阶的比较、讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。
2.一元函数微分学:主要考查导数与微分的定义、各种函数导数与微分的计算、利用洛比达法则求不定式极限、函数极值、方程的的个数、证明函数不等式、与中值定理相关的证明、值、最小值在物理、经济等方面实际应用、用导数研究函数性态和描绘函数图形、求曲线渐近线。
3.一元函数积分学:主要考查不定积分、定积分及广义积分的计算、变上限积分的求导、极限等、积分中值定理和积分性质的证明、定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。
4.多元函数微分学:主要考查偏导数存在、可微、连续的判断、多元函数和隐函数的一阶、二阶偏导数、多元函数极值或条件极值在与经济上的应用、二元连续函数在有界平面区域上的值和最小值。此外,数学一还要求会计算方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。
5.多元函数的积分学:包括二重积分在各种坐标下的计算,累次积分交换次序。数一还要求掌握三重积分,曲线积分和曲面积分以及相关的重要公式。
6.微分方程及差分方程:主要考查一阶微分方程的通解或特解、二阶线性常系数齐次和非齐次方程的特解或通解、微分方程的建立与求解。差分方程的基本概念与一介常系数线形方程求解方法
希望同学们在准备考研数学高数的复习过程中能够适当结合真题与模拟题,通过具体的题型来记忆高数相关知识点,在记忆理论基础知识的同时将具体解题技巧也收入囊中。同时建议条件允许的同学报一个辅导班,利用里面的师资来确保复习效率。最后,衷心祝愿同学们都能够成功考取自己理想中的大学。