第1篇 四年级上册数学期末复习知识点的总结
四年级上册数学期末复习知识点的总结
1、直线外一点到直线所画的垂直线段最短;这点到这条直线的垂足之间的长度叫距离。
2、两条平行线之间的距离处处相等。
3、两组对边分别平行的四边形叫做平行四边形;平行四边形有无数条高,平行四边形不是轴对称图形。
4、一个平行四边形在拉动过程中,面积变化,高变化,周长不变。平行四边形具有易变性。
5、只有一组对边平行的四边形叫梯形。
当梯形的两条腰相等时,这两腰相等的梯形叫做等腰梯形。等腰梯形是轴对称图形。
四个角都是直角的'四边形叫长方形。
四个角都是直角,并且四条边都相等的四边形叫正方形。
5、画高:
从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高。垂足所在的边叫做平行四边形的底。
当梯形的两条腰相等时,这两腰相等的梯形叫做等腰梯形。
特别注意:画高时,请注意;虚线、垂直标记、和名称。
第2篇 高一数学期末复习方法总结
导语进入高中后,很多新生有这样的心理落差,比自己成绩优秀的大有人在,很少有人注意到自己的存在,心理因此失衡,这是正常心理,但是应尽快进入学习状态。高一频道为正在努力学习的你整理了《高一数学期末复习方法总结》,希望对你有帮助!
1.高一数学期末复习方法总结
一、要有良好的学习兴趣
在数学的学习中,每天都会面对着非常多的数字。古人有云:知之者不如好之者,好之者不如乐之者。这句话的意思就是说如果想要干好一件事,就一定要知道他,但是了解他又不如爱好台,爱好他又不如乐在其中。这个乐就是要产生一种浓厚的兴趣。如果同学们能够对数学产生浓厚的兴趣,那么就能够从兴趣出发,有非常理性的思维,来解决数学的问题,成为数学学习中的佼佼者。如何才能建立起良好的数学学习兴趣呢:
(1)做好课前预习。数学课堂上仅有短短的45分钟,如果让学生在这45分钟之内,先对知识进行预习,这样会大大减小课堂效率,也是一种极其浪费时间的表现。因此同学们要想在课堂上能够充分的运用,在45分钟,就一定要在课前先对将要学习的数学知识进行一个简单系统的预习。要现在预习中找到自己可以自己解决的问题,也要找到那些自己不能解决的问题,然后重点标记,在课堂上着重听教师进行讲解。
(2)在课堂中要尽力配合老师的讲解。在听课的过程中,同学们应该能够找到课堂的重点,一般重点知识的讲解教师都会放在课堂已经进行一大半的时候,这时,学生的注意力应该更加集中,这样才能够理解教师本节课所讲述的最重点的知识内容。如果学生能够听懂教师的讲解,他们对数学学习的兴趣也会大大增加。
(3)在课后应该及时的进行复习巩固。如果学生只在课堂上听教师讲解,课后不进行及时的复习巩固,那么教师讲解的内容可能几天就已经忘记了,因而数学学习的成果并不明显。同学们在考试中不能看到明显的进步,他们对数学学习的兴趣也会大打折扣。
二、要能够以正确的心态来对待学习中遇到的新困难和新问题
同学们在刚刚开始接触高中数学时一定会对数学知识的难度产生很多的问题。如果学生因为遇到了一些困难,就对数学学习产生一种抵触心理,那么他们在今后的数学学习过程中,也一定会越来越差同学们要想学好高一的数学,就一定要先建立起强大的心理防线,要树立起克服困难的勇气与信心,即使遇到再大的困难,也要相信自己一定能度过难关。千万不能让这些问题不断地累积,否则就会造成一种恶性循环。学生们应该在教师的引导下和自己的努力下,及时的解决掉在数学学习中所遇到的困难,并且不断地探索解决问题的方法,总结经验教训,避免在同一个问题上被绊倒两次。
三、要有良好的自我调控能力
一般来讲,同学们在接受一段时间的学习后,一定会对数学教师的教学方法产生一个初步的进而开始不断地改变自己来适应教师的教学方法。每一个教师都有明确的教学风格和特点,我们作为一名学生,如果要让教师进行改变来适应,我们这么多人是非常不切合实际的,因此我们也只有不断地改变自己来配合老师,才能从根本上掌握教师的教学特点,并不断地优化自己的学习方法,使自己的学习逐渐地跟上老师的脚步,让自己学得更快更好。
四、要善于做课堂小结
总结的过程对于数学的学习来讲,也是十分有必要的,如果同学们能够在每次教师所讲完课程后,都做一个课堂小结,总结一下教师这一节课来讲的题目、解题方法、思维方式、基础知识点当知识,然后在课下及时地做复习巩固,这样的课堂效果才是的,我们在学习中的效率也是的。
五、循序渐进,充分掌握学科特点
在高一的课程中难度还较为基础我们可以先从一些简单的题型开始练起,将自己的基础,尽量建设的牢固,底层基础决定上层建筑,只有我们将高一数学完完整整地学好、学精,掌握到良好的学习方法技巧,那么在今后的数学学习中,我们也一定会乘风破浪取得更大的成绩。数学是要陪伴我们高中三年学习生活的,如果我们不能够戒骄戒躁,一旦取得一点成绩就骄傲自满,遇到挫折有焦躁不安、一蹶不振,这样我们是无法学好数学的。
除此之外,我们在高一学习中遇到困难时,一定要及时地向教师或身边的人请教,没有什么不好意思的,不懂就问是中华民族几千年来的传统美德。高一数学,重要的是强调数学思想的理解和掌握,在今后的学习中才是对这些思想的具体应用。我们应该充分的积极的调动自己的思维方法,不断地配合着教师的脚步,向更高更远的目标进行冲刺,即使高一数学在难度上还比较基础,我们也不能想着在高三最后总复习时再进行系统的学习巩固。只有完全熟悉了数字和计算方法才能够在数学的学习中取得更大的成绩。
2.高一数学期末复习方法总结
首先,不要忽视课本。把高一高二的所有教学课本找出来,认认真真仔仔细细地把里面的知识点定理公理等等都看一遍,包括书上的证明也不要忽视。不是说看一遍就了事的,而是真正的去理解他。因为在你高一高二所有的月考,期中考,期末考,经历了这么多题海战术之后你要做的就是要回归课本。你会发现有些高考题,他是很巧妙的利用了书上一些简单的定义进行变换和引申得到的。所以当老师带着从头复习的时候,不要排斥,而是要回忆,消化,理解和掌握这些书本上的基础知识。
第二,要尝试着去掌握一些新的定理和法则。在高一高二的时候,老师可能会说这个公式不是大纲要求的,所以不必掌握。这是完全正确的,因为当时所有的知识都是新的,你在面对过多新知识的时候,很难消化和掌握。但是现在你已经掌握了很多知识的基础上,在去适当的结合自己的能力去了解一些考纲之外的,就更容易掌握了。比如洛必达法则,高中虽然不讲,但是在答大题的时候用起来很方便的一个法则。如果你掌握了,你就会比别人做的更好更快更准确。
第三,要注意数学思想和方法的总结。比如说画图的思想,转化的思想等等。这个操作起来还是比较容易的。就是在你每次做完题要注意看解析,看他是怎么分析试题的;老师讲课的时候是怎么讲解和归类的;甚至可以多问一下身边的同学是怎么做这道题的,来寻求一题多解,多思路,看有没有比你的方法更好的方法。良好的方法是成功的一半,掌握了正确的方法不仅省时更省力。
第四,计算能力的提高。讲真,我是没有这个毛病的。但是我身边的好多同学有这个问题,就是明明会做的题一定会算错。小题大题一张卷下来能扣出来10分。嘴上说着是粗心,但我认为不是。我觉得有两个原因,一个是知识掌握的不牢固,另一个是自身计算能力太差。这两点都是很致命的。计算能力的提高,会让正确率上升,会做的题会一次性做对。同时,也会节省出很多时间,去做其他的题。所以从一轮复习开始就要学会提升自己的计算能力,这样到最后才不会后悔
3.高一数学期末复习方法总结
一)课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,应尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作*,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二)适当多做题,养成良好的解题习惯。
要想学好数学,多做题是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三)调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我,要有自己不垮,谁也不能打垮我的自豪感。
在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。
4.高一数学期末复习方法总结
(一)制定复习计划、注重系统性
期末复习时间紧,任务重,为了减轻工作压力,提高复习效率,要制定好复习计划,对复习过程进行全面筹划。也就是对复习的基本思路、方法过程、采取的具体措施和复习时间进度进行筹划,避免出现复习时前紧后松或前松后紧的现象,影响复习的整体质量。
教材是一个整体系统,复习时应抓住知识间的内在联系,启发学生将知识进行系统的整理,将平常所学的孤立的知识串在一起,将零散的概念汇集成块,使之条理化、系统化,做到“横成片,竖成线”,形成完整的知识网络,使学生对所学的知识一目了然,便于记忆和运用,同时通过系统整理知识,培养学生的概括能力,发展学生的逻辑思维能力。如分数的意义和性质一章,可以整理成表,使学生对于本章内容从分数的意义到分数与除法的关系、分数的大小比较,分数的分类与互化,以及分数的基本性质与应用,有一个系统的了解,有利于知识的系统化和对其内在联系的把握。
(二)夯实基础,查漏补缺
数学知识点较多,因此在复习的过程中,要帮助学生查找他们的遗漏点,或者说那些不常用的非重点知识,扫清这些盲点。以七年级数学为例,像平移、镶嵌、实数的分类等边缘知识点很容易被一些同学忽视。复习时,首先要弄清这些知识点,其次要弄懂典型例题。
(三)辨析比较,区分易混概念。
对于易混概念,首先要抓住意义方面的比较。如质数和奇数;质数和质因数;比和比例等。又如,“-a表示负数”是错误的:当a≤0时,-a为非负数,实际上-a表示任意有理数。对易混概念的分析,能够帮助学生全面把握概念的本质,避免不同概念的干扰。对易混的方法也应该进行比较,以明确解题方法。
(四)规范书写,强化重点
考试,不仅要注意知识点的覆盖率,更注重对重点知识进行重点考察。例如,七年级数学中的平行线的性质和判定、三角形的三边、三角的关系,外角和内角的关系,二元一次方程组的解法及应用,一元一次不等式(组)的解法及应用,还有平方根、立方根等都属于必考的范畴,复习时要强化这部分内容,规范重点题型的采分点的书写,并让学生多加练习。
(五)注重技巧,突破难点
大型的数学考试,试题不仅要面向全体学生,又要有利于提高考试的区分度,因此,难题是必不可少的。所谓难题,即可以是读起来不易理解的文字应用题,也可以是综合性很强的几何、代数综合题。复习时首先要让学生对教材上的难点理解透彻,其次要给学生讲解、总结各类题目的解题技巧,突破这些难点。
(六)一题多解,多题一解,提高解题的灵活性。
有些题目,可以从不同的角度去分析,得到不同的解题方法。一题多解可以培养学生分析问题的能力,开阔解题思路,灵活解题的能力。还有些题目,虽然形式不同,但它们的解题方法是一样的。如工程问题和相遇问题中的部分习题,题目的类型不同,但解题的算式是一样的。复习时,要引导学生从不同的角度去思考,引导学生对各类习题进行归类,举一反三,这样才能使所学的知识融会贯通,提高解题的灵活性。
5.高一数学期末复习方法总结
一、课后及时回忆
如果等到把课堂内容遗忘得差不多时才复习,就几乎等于重新学习,所以课堂学习的新知识必须及时复习。
可以一个人单独回忆,也可以几个人在一起互相启发,补充回忆。一般按照教师板书的提纲和要领进行,也可以按教材纲目结构进行,从课题到重点内容,再到例题的每部分的细节,循序渐进地进行复习。在复习过程中要不失时机整理笔记,因为整理笔记也是一种有效的复习方法。
二、定期重复巩固
即使是复习过的内容仍须定期巩固,但是复习的次数应随时间的增长而逐步减小,间隔也可以逐渐拉长。可以当天巩固新知识,每周进行周小结,每月进行阶段性总结,期中、期末进行全面系统的学期复习。从内容上看,每课知识即时回顾,每单元进行知识梳理,每章节进行知识归纳总结,必须把相关知识串联在一起,形成知识网络,达到对知识和方法的整体把握。
三、科学合理安排
复习一般可以分为集中复习和分散复习。实验证明,分散复习的效果优于集中复习,特殊情况除外。分散复习,可以把需要识记的材料适当分类,并且与其他的学习或娱乐或休息交替进行,不至于单调使用某种思维方式,形成疲劳。分散复习也应结合各自认知水平,以及识记素材的'特点,把握重复次数与间隔时间,并非间隔时间越长越好,而要适合自己的复习规律。
四、重点难点突破
对所学的素材要进行分析、归类,找出重、难点,分清主次。在复习过程中,特别要关注难点及容易造成误解的问题,应分析其关键点和易错点,找出原因,必要时还可以把这类问题进行梳理,记录在一个专题本上,也可以在电脑上做一个重难点“超市”,可随时点击,进行复习。
五、复习效果检测
随着时间的推移,复习的效果会产生变化,有的淡化、有的模糊、有的不准确,到底各环节的内容掌握得如何,需进行效果检测,如:周周练、月月测、单元过关练习、期中考试、期末考试等,都是为了检测学习效果。检测时必须独立,完成,保证检测出的效果的真实性,如果存在问题,应该找到错误的根源,并适时采取补救措施进行校正。目前市场上练习册多如牛毛,请在老师的指导下选用。
第3篇 初二数学期末复习计划总结
一、复习目标
1、通过复习,使学生认识分式,理解掌握分式的基本性质。能约分和通分。会进行分式的加件、乘除运算。了解分式方程的概念,会解分式方程和应用题。
2、通过复习,使学生掌握函数的基本知识,以及一次函数和反比例函数这两类函数的图象、性质和应用。
3、通过复习,知道命题与定理、三角形全等的判定、尺规作图、逆命题与逆定理。熟练掌握三角形判定和直角三角形的特殊判定,并会应用,掌握基本做图。
4、通过复习,使学生掌握平行四边形,菱形、矩形、正方形、等腰梯形的有关性质和判定方法。发展学生的合理推理能力,进一步培养学生逻辑推理能力,会简单的应用。
5、掌握平均数、中位数、众数、方差的概念,会求一组数据的平均数、中位数、众数、方差。
6、通过复习,知道相似三角形的概念和性质,会根据相似三角形判定和性质来解决简单的实际问题。
二、复习内容
第17章 分式
第18章 函数及其图象
第19章 全等三角形
第20章 平行四边形的判定
第21章 数据的整理和初步处理
第24章 相似三角形
三、时间安排
第一周 6月9号----6月13号 第17章 第18章 第9章第20章
第二周6月16号----6月20号 第21章 第24章
第三周6月21号----6月22号 综合复习
四、实施措施
1、有条理有针对性的进行整理与系统复习,使学生对知识能系统掌握。 重视学生创造性思维的发展,培养学生的创造力。
2、抓薄弱环节,进行集中练习
针对逐单元复习中出现的比较集中的内容,采用多练精讲的策略,使学生做到巩固复习的目的。多练精讲中使学生做到举一反三,触类旁通。
3、作综合试卷,形成综合处理能力。
用作综合试卷的方法,对学生本学期所学的知识进行综合考验,培养学生的解题能力,了解学生的不足,采取个别有针对性的复习。
4、抓住个别落后生,采取一对一的复习。
抓住落后面较大,在逐一复习和集中复习效果不好的个别学生,采取一对一式的复习。让落后生也能跟上步伐,巩固知识,缩小落后面。
通过以上多种复习手段,使学生达到应有的教学目标,获得必需的数学知识。
第4篇 初二数学期末复习知识点总结人教版
第十一章 全等三角形复习
一、全等三角形
1.定义:能够完全重合的两个三角形叫做全等三角形。
理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。
2、全等三角形有哪些性质
(1)全等三角形的对应边相等、对应角相等。
理解:①长边对长边,短边对短边;角对角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。
(2)全等三角形的周长相等、面积相等。
(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3、全等三角形的判定
边边边:三边对应相等的两个三角形全等(可简写成“sss”)
1、性质:角的平分线上的点到角的两边的距离相等.
2、判定:角的内部到角的两边的距离相等的点在角的平分线上。
三、学习全等三角形应注意以下几个问题:
(1) 要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;
(2 表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;
(3) “有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;
(4)时刻注意图形中的隐含条件,如 “公共角” 、“公共边”、“对顶角”
(5)截长补短法证三角形全等。
第十二章 轴对称
一、轴对称图形
1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。
2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线
4.轴对称与轴对称图形的性质
① 关于某直线对称的两个图形是全等形。
② 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。 ③ 轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④ 如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
⑤ 两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
二、线段的垂直平分线
1.定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。
2.性质:线段垂直平分线上的点与这条线段的两个端点的距离相等
3.判定:与一条线段两个端点距离相等的点,在线段的垂直平分线上
三、用坐标表示轴对称小结:
1.在平面直角坐标系中
①关于x轴对称的点横坐标相等,纵坐标互为相反数;
②关于y轴对称的点横坐标互为相反数,纵坐标相等;
③关于原点对称的点横坐标和纵坐标互为相反数;
④与x轴或y轴平行的直线的两个点横(纵)坐标的关系;
⑤关于与直线x=c或y=c对称的坐标
点(x, y)关于x轴对称的点的坐标为_ (x, -y)_____.
点(x, y)关于y轴对称的点的坐标为___(-x, y)___.
2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等
四、(等腰三角形)知识点回顾
1.等腰三角形的性质
①.等腰三角形的两个底角相等。(等边对等角)
②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)
理解:已知等腰三角形的一线就可以推知另两线。
2、等腰三角形的判定:
如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)
五、(等边三角形)知识点回顾
1.等边三角形的性质:
等边三角形的三个角都相等,并且每一个角都等于600 。
2、等边三角形的判定:
①三个角都相等的三角形是等边三角形。
②有一个角是600的等腰三角形是等边三角形。
3.在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半。 0
第十三章 实数知识要点归纳
一、 实数的分类:
正整数
整数 零 负整数 有限小数或无限循环小数
正分数
分数
负分数 小数
1. 正无理数
无理数 无限不循环小数
负无理数
2、数轴:规定了(画数轴时,要注童上述规定的三要素缺一个不可),
实数与数轴上的点是一一对应的。
数轴上任一点对应的数总大于这个点左边的点对应的数。
3、相反数与倒数; a(a0)4、绝对值 |a|0(a0)
5、近似数与有效数字; a(a0)
6、科学记数法
7、平方根与算术平方根、立方根;
8、非负数的性质:若几个非负数之和为零 ,则这几个数都等于零。
二、复习
1. 无理数:无限不循环小数
算术平方根定义如果一个非负数x的平方等于a,即x2a
那么这个非负数x就叫做a的算术平方根,记为a,
算术平方根为非负数a0
正数的平方根有2个,它们互为相反数平方根0的平方根是0负数没有平方根22.无理数的表示定义:如果一个数的平方等于a,即xa,那么这个数就
叫做a的平方根,记为a
正数的立方根是正数立方根负数的立方根是负数0的立方根是0
定义:如果一个数x的立方等于a,即x3a,那么这个数x
就叫做a的立方根,记为3a.
概念有理数和无理数统称实数
正数有理数分类或0无理数负数3.实数及其相关概念
绝对值、相反数、倒数的意义同有理数
实数与数轴上的点是一一对应
实数的运算法则、运算规律与有理数的运算法则
运算规律相同。
第十四章 一次函数
一.常量、变量:
在一个变化过程中,数值发生变化的量叫做;数值始终不变的量叫做
二、函数的概念:
函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有确定的值与其对应,那么我们就说x是自变量,y是x的函数.
三、函数中自变量取值范围的求法:
(1)用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
(3)用寄次根式表示的函数,自变量的取值范围是全体实数。
用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一 切实数。
(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。
(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。
四、 函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.
五、用描点法画函数的图象的一般步骤
28位用户关注